1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
// // GLSL Mathematics for Rust. // // Copyright (c) 2015 The glm-rs authors. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. use basenum::BaseFloat; use traits::GenFloat; use vec::traits::GenFloatVec; use builtin as bif; /// Returns the squre of the length of vector `x`. /// /// # Example /// /// ```rust /// use glm::*; /// use glm::ext::*; /// /// assert_eq!(sqlength(vec2(1., 2.)), 5.); /// ``` #[inline(always)] pub fn sqlength<F: BaseFloat, T: GenFloatVec<F>>(x: T) -> F { bif::dot(x, x) } /// Returns the reciprocal (inverse) of the length of vector `x`. /// /// # Example /// /// ```rust /// use glm::*; /// use glm::ext::*; /// /// let v = vec2(3., 4.); /// assert_eq!(recip_length(v), 0.2); /// ``` #[inline(always)] pub fn recip_length<F: BaseFloat + GenFloat<F>, T: GenFloatVec<F>>(x: T) -> F { bif::inversesqrt(sqlength(x)) } /// Normalizes vector `x` of specific length `len`. /// /// # Example /// /// ``` /// use glm::length; /// use glm::ext::normalize_to; /// /// let v = glm::vec2(3., 4.); /// assert_eq!(length(normalize_to(v, 2.)), 2.); /// ``` #[inline(always)] pub fn normalize_to<F: BaseFloat + GenFloat<F>, T: GenFloatVec<F>>(x: T, len: F) -> T { bif::normalize(x) * len } /// Projects `x` on `y`. /// /// # Example /// /// ``` /// use glm::vec2; /// use glm::ext::projection; /// /// assert_eq!(projection(vec2(1., 0.), vec2(1., 1.)), vec2(0.5, 0.5)); /// ``` #[inline] pub fn projection<F: BaseFloat, T: GenFloatVec<F>>(x: T, y: T) -> T { let ling = F::zero(); let sqlen = sqlength(y); if sqlen.is_approx_eq(&ling) { T::zero() } else { y * bif::dot(x, y) * sqlen.recip() } } /// Returns `true` if vector `x` is perpendicular to `y`, i.e., angle between /// `x` and `y` is π/2. /// /// # Example /// /// ```rust /// use glm::ext::is_perpendicular; /// /// let x = glm::vec2(1., 0.); /// let y = glm::vec2(0., 1.); /// assert!(is_perpendicular(x, y)); /// ``` #[inline(always)] pub fn is_perpendicular<F: BaseFloat, T: GenFloatVec<F>>(x: T, y: T) -> bool { bif::dot(x, y).is_approx_eq(&F::zero()) } /// Returns angle between vectors `x` and `y`. /// /// The return value is in radian unit and in the interval [0, π]. /// /// # Note /// /// - `x` and `y` need be normalized to get meaningful result. /// - If either `x` or `y` is zero, the angle is undefined, and `0` is returned. /// /// # Example /// /// ``` /// use glm::*; /// use glm::ext::*; /// /// let vx = vec2(1., 0.); /// let vy = vec2(0., 1.); /// assert!(is_approx_eq(&angle(vx, vy), &half_pi())); /// assert!(is_approx_eq(&angle(vy, vx), &half_pi())); /// ``` #[inline] pub fn angle<F: BaseFloat + GenFloat<F>, T: GenFloatVec<F>>(x: T, y: T) -> F { let ling = F::zero(); let sqmag = bif::dot(x, x) * bif::dot(y, y); if sqmag.is_approx_eq(&ling) { ling } else { (bif::dot(x, y) * bif::inversesqrt(sqmag)).acos() } }