1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
// // GLSL Mathematics for Rust. // // Copyright (c) 2015 The glm-rs authors. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // The GLSL Specification, ch 8.6, Matrix Functions. use basenum::BaseFloat; use mat::traits::{ GenMat, GenSquareMat }; use vec::traits::GenFloatVec; /// Multiply matrix `x` by matrix `y` component-wise, i.e., `result[i][j]` is /// the scalar product of `x[i][j]` and `y[i][j]`. /// /// # Note /// /// To get linear algebraic matrix multiplication, use the multiply operator /// `*`. /// /// # Example /// /// ``` /// use glm::{ matrixCompMult, mat3x2 }; /// /// let m1 = mat3x2(1., 4., 2., 5., 3., 6.); /// let m2 = mat3x2(2., 3., 2., 3., 2., 3.); /// let me = mat3x2(2., 12., 4., 15., 6., 18.); /// assert_eq!(matrixCompMult(&m1, &m2), me); /// ``` #[inline(always)] #[allow(non_snake_case)] pub fn matrixCompMult< T: BaseFloat, C: GenFloatVec<T>, M: GenMat<T, C> >(x: &M, y: &M) -> M { x.mul_c(y) } /// Treats the first parameter `c` as a column vector (matrix with one column) /// and the second parameter `r` as a row vector (matrix with one row) /// and does a linear algebraic matrix multiply `c * r`, /// yielding a matrix whose number of rows is the number of components in `c` /// and whose number of columns is the number of components in `r`. /// /// # Example /// /// ``` /// # use glm::*; /// let v2 = vec2(1., 2.); /// let v3 = vec3(4., 0., -1.); /// let e = mat3x2(4., 8., 0., 0., -1., -2.); /// let op: Mat3x2 = outerProduct(v2, v3); /// assert_eq!(op, e); /// ``` #[inline] #[allow(non_snake_case)] pub fn outerProduct< T: BaseFloat, C: GenFloatVec<T>, R: GenFloatVec<T>, /* * NOTE: * I can't believe Rust allows this! But Rust is wrong at the first place. * Associated types (e.g., `R` and `Transpose` of `GenMat` here) are not type * parameters, and should not be mandatorily required when specifying a type, * and if `Transpose` is ommitted (as we did before), that does not mean * `GenMat` is not implemented for `Tanspose` of `M` (E0277). How could that * be possible? */ N: GenMat<T, R, R = C, Transpose = M>, M: GenMat<T, C, R = R, Transpose = N> >(c: C, r: R) -> M { let mut z = M::zero(); let dim = R::dim(); for i in 0..dim { z[i] = c * r[i]; }; z } /// Returns a matrix that is the transpose of `m`. /// /// The input matrix `m` is not modified. #[inline(always)] pub fn transpose< T: BaseFloat, C: GenFloatVec<T>, M: GenMat<T, C> >(m: &M) -> M::Transpose { m.transpose() } /// Returns the determinant of `m`. #[inline(always)] pub fn determinant< T: BaseFloat, C: GenFloatVec<T>, M: GenSquareMat<T, C> >(m: &M) -> T { m.determinant() } /// Returns a matrix that is the inverse of `m`. /// /// The input matrix `m` is not modified. /// /// # Panic /// /// It is a panic if `m` is singular or poorly-conditioned (nearly singular). #[inline] pub fn inverse< T: BaseFloat, C: GenFloatVec<T>, M: GenSquareMat<T, C> >(m: &M) -> M { let inv = m.inverse(); match inv { Some(im) => im, _ => panic!("inverse a matrix that is not invertible.") } }