1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
//
// GLSL Mathematics for Rust.
//
// Copyright (c) 2015 The glm-rs authors.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

// The GLSL Specification, ch 8.5, Geometric Functions.
//
// NOTE:
// - `ftransform` is not implemented.

use basenum::BaseFloat;
use traits::GenFloat;
use vec::traits::GenFloatVec;
use vec::vec::Vector3;
use super::exp::inversesqrt;

/// Returns the dot product of `x` and `y`, i.e.,
/// `x[0] * y[0] + x[1] * y[1] + ...`.
///
/// # Example
///
/// ```
/// use glm::{ dot, vec2 };
///
/// let v1 = vec2(1., 2.);
/// let v2 = vec2(3., 4.);
/// assert_eq!(dot(v1, v2), 11.);
/// ```
#[inline(always)]
pub fn dot<S: BaseFloat, T: GenFloatVec<S>>(x: T, y: T) -> S {
    (x * y).sum()
}

/// Returns the length of vector `x`, i.e., `sqrt(x[0]^2 + x[1]^2 + ...)`.
///
/// # Example
///
/// ```
/// assert_eq!(glm::length(glm::vec2(3., 4.)), 5.);
/// ```
#[inline(always)]
pub fn length<S: BaseFloat, T: GenFloatVec<S>>(x: T) -> S {
    dot(x, x).sqrt()
}

/// Returns a vector in the same direction as `x` but with a length of `1`.
///
/// # Example
///
/// ```
/// use glm::{ normalize, dvec2, ApproxEq };
///
/// assert!(normalize(dvec2(3., 4.)).is_approx_eq(&dvec2(0.6, 0.8)));
/// ```
#[inline(always)]
pub fn normalize<S: BaseFloat + GenFloat<S>, T: GenFloatVec<S>>(x: T) -> T {
    x * inversesqrt(dot(x, x))
}

/// Returns the distance between `p0` and `p1`, i.e., `length(p0 – p1)`.
///
/// # Example
///
/// ```
/// use glm::{ distance, vec2 };
///
/// let v1 = vec2(1., 2.);
/// let v2 = vec2(4., 6.);
/// assert_eq!(distance(v1, v2), 5.);
/// ```
#[inline(always)]
pub fn distance<S: BaseFloat, T: GenFloatVec<S>>(p0: T, p1: T) -> S {
    length(p0 - p1)
}

/// If `dot(Nref, I) < 0` return *N*, otherwise return *-N*.
#[inline]
#[allow(non_snake_case)]
pub fn faceforward<S: BaseFloat, T: GenFloatVec<S>>(N: T, I: T, Nref: T) -> T {
    let ling = S::zero();
    if dot(Nref, I) < ling {
        N
    } else {
        -N
    }
}

/// For the incident vector *I* and surface orientation *N*,
/// returns the reflection direction: `I - 2 ∗ dot(N, I) ∗ N`.
///
/// *N* must already be normalized in order to achieve the desired result.
#[inline]
#[allow(non_snake_case)]
pub fn reflect<S: BaseFloat, T: GenFloatVec<S>>(I: T, N: T) -> T {
    let d = dot(N, I);
    I - N * (d + d)
}

/// For the incident vector *I* and surface normal *N*, and the ratio of
/// indices of refraction `eta`, return the refraction vector.
///
/// The result is computed by,
/// ```ignore
/// k = 1.0 - eta * eta * (1.0 - dot(N, I) * dot(N, I))
/// if (k < 0.0)
///     return genType(0.0) // or genDType(0.0)
/// else
///     return eta * I - (eta * dot(N, I) + sqrt(k)) * N
/// ```
///
/// The input parameters for the incident vector *I* and the surface normal *N*
/// must already be normalized to get the desired results.
#[inline]
#[allow(non_snake_case)]
pub fn refract<S: BaseFloat, T: GenFloatVec<S>>(I: T, N: T, eta: S) -> T {
    let dot_ni = dot(I, N);
    let yi = S::one();
    let ling = S::zero();

    let k = yi - eta * eta * (yi - dot_ni) * dot_ni;
    if k < ling {
        T::zero()
    } else {
        I * eta - N * (eta * dot_ni + k.sqrt())
    }
}

/// Returns the cross product of `x` and `y`.
///
/// # Example
///
/// ```
/// use glm::vec3;
///
/// let x = vec3(1.0, 0.0, 0.0);
/// let y = vec3(0.0, 1.0, 0.0);
/// let z = vec3(0.0, 0.0, 1.0);
/// assert_eq!(glm::cross(x, y), z);
/// ```
#[inline]
pub fn cross<F: BaseFloat>(x: Vector3<F>, y: Vector3<F>) -> Vector3<F> {
    Vector3::new(
        x.y * y.z - y.y * x.z,
        x.z * y.x - y.z * x.x,
        x.x * y.y - y.x * x.y
    )
}