1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
// // GLSL Mathematics for Rust. // // Copyright (c) 2015 The glm-rs authors. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // The GLSL Specification, ch 8.2, Exponential Functions. use basenum::BaseFloat; use traits::GenFloat; use num::Float; /// Returns `x` raised to the `y` power, i.e., *x<sup>y</sup>*. /// /// Results are undefined if `x < 0`. /// /// Results are undefined if `x = 0` and `y ≤ 0`. /// /// # Example /// /// ``` /// use glm::{ pow, vec3 }; /// /// assert_eq!(pow(2.0, 3.0), 8.0); /// let v1 = vec3(1.0, 2.0, 3.0); /// let v2 = vec3(1.0, 4.0, 27.0); /// assert_eq!(pow(v1, v1), v2); /// ``` #[inline(always)] pub fn pow<F: BaseFloat, T: GenFloat<F>>(x: T, y: T) -> T { x.zip(y, Float::powf) } /// Returns the natural exponentiation of `x`. i.e., *e<sup>x</sup>*. /// /// # Example /// /// ``` /// use glm::{ exp, ApproxEq }; /// use glm::ext::e; /// /// let e1: f32 = e(); /// let e2 = e1 * e1; /// assert!(exp(2.).is_close_to(&e2, 0.000001)); /// ``` #[inline(always)] pub fn exp<F: BaseFloat, T: GenFloat<F>>(x: T) -> T { x.map(Float::exp) } /// Returns the natural logarithm of `x`. i.e., the value `y` which satisfies /// *x = e<sup>y</sup>*. /// /// # Example /// /// ``` /// use glm::{ log, ApproxEq }; /// use glm::ext::e; /// /// let e1: f64 = e(); /// let e2 = e1 * e1; /// assert!(log(e2).is_approx_eq(&2.)); /// ``` #[inline(always)] pub fn log<F: BaseFloat, T: GenFloat<F>>(x: T) -> T { x.map(Float::ln) } /// Returns `2` raised to the power of `x`. i.e., *2<sup>x</sup>*. /// /// # Example /// /// ``` /// use glm::{ exp2, dvec2 }; /// /// assert_eq!(exp2(10_f32), 1024.); /// assert_eq!(exp2(dvec2(-1., 5.)), dvec2(0.5, 32.)); /// ``` #[inline(always)] pub fn exp2<F: BaseFloat, T: GenFloat<F>>(x: T) -> T { x.map(Float::exp2) } /// Returns the base `2` logarithm of `x`. i.e., the value `y` which satisfies /// *x = 2<sup>y</sup>*. /// /// Results are undefined if `x < 0`. /// /// # Example /// /// ``` /// use glm::{ log2, vec2 }; /// assert_eq!(log2(vec2(64., 256.)), vec2(6., 8.)); /// ``` #[inline(always)] pub fn log2<F: BaseFloat, T: GenFloat<F>>(x: T) -> T { x.map(Float::log2) } /// Returns the square root of `x`. i.e., the value `sqrt(x)`. /// /// Results are undefined if `x < 0`. /// /// # Example /// /// ``` /// use glm::{ sqrt, vec2 }; /// assert_eq!(sqrt(vec2(64., 1.)), vec2(8., 1.)); /// ``` #[inline(always)] pub fn sqrt<F: BaseFloat, T: GenFloat<F>>(x: T) -> T { x.map(Float::sqrt) } /// Returns the inverse of the square root of `x`. i.e., the value `1/sqrt(x)`. /// /// Results are undefined if `x ≤ 0`. /// /// # Example /// /// ``` /// use glm::{ inversesqrt, vec2 }; /// assert_eq!(inversesqrt(4_f32), 0.5); /// assert_eq!(inversesqrt(vec2(64., 1.)), vec2(0.125, 1.)); /// ``` #[inline(always)] pub fn inversesqrt<F: BaseFloat, T: GenFloat<F>>(x: T) -> T { x.map(|f| -> F { f.sqrt().recip() }) }